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Received 28 September 1981 

Abstract. The Belinsky and Zakharov soliton technique is applied to find stationary 
axisymmetric one-soliton solutions of the Einstein equations in vacuum. In order to 
generate (2n + 1)aoliton solutions with physical signature we take the (unphysical) Euclid- 
ean metric as the seed solution. The one-soliton solutions are a family of non-asymptotic- 
ally flat metria depending on one parameter and can be considered as being the stationary 
generalisations of a very simple family of static Weyl metria. They are Petrov type I metria 
except for one of its members, which is Petrov type I1 and can be simply related to the van 
Stockum class. The Ernst potential of these solutions and the use of prolate spheroidal 
coordinates suggest new related families of solutions which are asymptotically flat. One of 
them contains the Zipoy-Voorhees metric with deformation parameter 6 = f as a particular 
case. 

1. introduction 

Several generation techniques for finding new solutions of the Einstein equations from 
known ones when certain symmetries are assumed have been developed in the past few 
years. For a review of these techniques and their relations see Cosgrove (1980). One 
such technique, developed by Belinsky and Zakharov (1978), is based on the inverse 
scattering method (soliton technique) which has been applied to non-linear equations in 
other fields of physics. 

The soliton technique can be applied to the Einstein equations in vacuum if one 
assumes the existence of two commuting Killing vectors. It allows one to generate the 
so called n-soliton solutions with an arbitrarily large number of multipole parameters, 
depending on how large n is, from given ‘seed’ solutions. Thus, for instance, the Kerr 
metric is the 2-soliton solution obtained from the Minkowski seed. 

The stationary misymmetric 2n-soliton solutions from the Minkowski metric have 
been studied by Belinsky and Zakharov (1980) and Alekseev and Belinsky (1981). 
Cosgrove (1980) has catalogued all the stationary axisymmetric asymptotically flat 
metrics that can be deduced from the Weyl and the Cosgrove-Tomimatsu-Sat0 metrics. 

The stationary axisymmetric (2n + 1)-soliton solutions can only be obtained from a 
seed with non-physical signature. The reason is that the introduction of one soliton 
produces a signature change in the metric. 

In this paper we study the simplest of such solutions, namely, the stationary 
axisymmetric one-soliton solutions deduced from the (unphysical) Euclidean metric. 

‘I On leave from Departamento de Fisica Teorica, Universidad Autonoma de Barcelona, Bellaterra 
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These solutions can be considered as physical seeds for the general (2n + 1)-soliton 
solutions. 

The family of metrics obtained depends on two arbitrary parameters (essentially 
one) and is of Petrov type I except for one of its members. It has two interesting limits 
which we study in some detail: the ‘static’ and the ‘magnetic’ limits. The first one is 
singular on the axis of symmetry and is related to one of the Kinnersley and Kelly (1974) 
‘extreme Kerr’ solutions. The magnetic limit, on the other hand, is of Petrov type I1 and 
is related to the van Stockum (1937) class by a simple complex coordinate trans- 
formation. 

By studying the Prnst (1968) potentials of the solutions and using prolate spheroidal 
coordinates one can construct related asymptotically flat solutions. One of them 
includes the Zipoy-Voorhees solution (Voorhees 1970) with deformation parameter 
8 = 3 as a particular case. 

The paper is divided as follows. 
In 0 2 we briefly describe the soliton technique and find the one-soliton solution 

from a seed metric which is the axisymmetric version of the cosmological Kasner 
solution and includes the Euclidean metric as a particular case. The solution can be 
seen as the stationary generalisation of a rather simple family of static (non-flat) Weyl 
solutions which can be obtained by combining two types of flat solutions. We then give 
$he one-soliton solution from the Euclidean seed and its magnetic limit in appropriate 
coordinate systems. 

In 0 3 the Riemann curvature tensor of the solution is obtained in a local orthonor- 
mal frame. The normal forms of the Weyl tensor are given for the Petrov type I static 
limit and for the Petrov type I1 magnetic limit. We discuss some of the intrinsic features 
of the metrics. 

Finally, in 0 4 we use the Ernst potentials to relate our solution to other known 
solutions. Using the symmetry of these potentials in terms of prolate spheroidal 
coordinates we find some related asymptotically flat solutions. The most interesting of 
those includes the Zipoy-Voorhees metric with deformation parameter S = 3 which can 
be interpreted as the external field of a rod. The procedure used also suggests a possible 
physical interpretation for the one-soliton metric. 

2. One-soliton solutions 

We will first summarise the main results of the Belinsky and Zakharov (1978, 1980) 
soliton technique. 

For a stationary axisymmetric gravitational field the metric can be written as 

ds2 = f(dp2 + dz’) + gAB dx A dx (xo = t, xl= c p ;  A, B =0, 1) (2.1) 

where the metric coefficient f and the two-dimensional matrix g depend on p and z 
only. One can always choose coordinates p and z such that 

det g = -p2; (2.2) 

in this case the Einstein equations in vacuum take the form 

U,, + v,, = 0 (2.3) 

(2.4) (In f),, = -p-’ + (4p)-’ Tr( U’ - V2) (In f ) , ,  = Tr( VV) 
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where 

U = pg,Pg-’ v = pg,zg-’. (2.5) 
Thus, the matrix g is determined by the non-linear system (2.3) independently off, 

whereas the coefficient f is determined by the linear system (2.4) once g is known. The 
soliton technique focuses its attention on the problem of finding a solution for g. The 
key point is the association to the system (2.3) of the linear ‘eigenvalue’ problem 

where A is a complex spectral parameter and #(A, p, z )  is a two-dimensional matrix that 
verifies 

(2.7) 
Given a particular solution of (2.6), say #o, one generates the so called n-soliton 

solution t,b by purely algebraic operations if one assumes that @ is the product of eo and 
a two-dimensional matrix with n simple poles in the complex A plane. Then (2.7) shows 
that one can find the n-soliton solution g if a particular seed solution go of the Einstein 
equations is given, provided one can integrate (2.6) to find the So corresponding to go. 
In general, such an integration is by no means trivial. However, when go is diagonal it 
can be easily done. Jantzen (1980), for instance, has integrated the corresponding 
equations (2.6) for several cosmological solutions. 

g(P, 2) = #(O, P, 2). 

The explicit results are as follows. 
One starts with the ‘pole trajectories’ 

p& = W&-Zf[(W&-z)2+p2]1’2 ( Wk = arbitrary constants) (2.8) 
and defines the matrix g’ by 

g ’ = ( I -  1 Rk -)go 
k = l  @k 

(2.9) 

( k )  ( k )  where (Rk)AB = nA mB with 

mak) = mZk’[$ol ( p k ,  p, z)ICA (mZk)  = arbitrary constants) 

and the nak) can be obtained from 

Then g‘ is a solution of (2.3) but is not a solution of the Einstein equations since it does 
not verify (2.2). In fact it can be shown that 

“ 1  
det g’ = (-l)n$“( JJ 7) det go; (2.10) 

k=l  p k  

however, it is easy to obtain from it a solution 

(2.11) I -1/2 I 
g = -p(-det g ) g . 

Expression (2.10) shows that only for n even will the signature of go and g coincide. 
For n odd one will need a non-physical seed to obtain a metric with the physical 
signature. 
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Turning now to the coefficientf, it is a remarkable fact that, for the n-soliton solution 
given above, f can be integrated explicitly. In terms of the corresponding seed solution 
fo, this coefficient is given by 

n + l  

f= cfOP-””2(  fi r k )  [ fi ( k k  -/Jf)2]-1 det r k l  (C = arbitrary constant) 
k = l  k . l= l  

k>f 
(2.12) 

where the square bracket is 1 for n = 1. 
The a-soliton solution can be considered as the one-soliton solution obtained from 

the (n - 1)-soliton solution seed. As we increase n, the number of arbitrary parameters 
of the solution increases. In this sense the simplest solution generated by the Belinsky 
and Zakharov method is the one-soliton solution obtained from the Euclidean metric. 

We take the seed metric 
s;+s;-1 

f o = P  go = diag(p”1, p2’2) (s1+s2=1) (2.13) 

which is a solution of (2.3) and (2.4) with the non-physical signature detgo=p2. It 
corresponds to the Kasner solution in a cosmological type metric, with z and c as 
non-ignorable coordinates, and includes the Euclidean metric as the particular case 
s1 = 0. 

The particular solution +o from (2.6) is easily found to be 

+0=diag[(p2-2zh - A 2 ) ” ,  (p2-22zh -h2Is2] 

and using (2.9), (2.11) and (2.12) for n = 1 we obtain the one-soliton solution 

CpZqz cosh(qr/l +D) 1 
( z  * + p’)”’ (dp ’ + d z  2, + cosh(qr/l + D) ds = 

x[-p2‘ l  sinh(slr/l+D)dt2-p2S2sinh(s2r/l-D) dp2-2p cosh($+) d t  dp] 
(2.14) 

where C and D are arbitrary constants, q = s1 -$  and 

e-* = ( P / d 2  with p = W - z + [( W - z ) ~  + P ~ ] ” ~ .  (2.15) 

By a shift in the origin of the z axis one can always eliminate the arbitrary constant 
W. Only the parameter D is essential. Choosing the negative sign in front of the pole 
trajectory (2.15) leads to the same metric after a coordinate transformation. 

The solution (2.14) corresponds to the Belinsky and Zakharov (1978) one-soliton 
cosmological solution generated from the Kasner metric. Notice, however, that a 
simple complex coordinate transformation from that solution would lead to a metric 
with a non-physical signature. 

It is interesting to look at the matrix element gtt since it corresponds to the real part 
of the Ernst (1968) potential 8, 

sinh(sl+ +D) 
cosh(qr/l+D)‘ 

Re z9 =p2’l 

Changing now the coordinates (p, z )  to (r, e), 

(2.16) 

p = r sin e 2 - W =  r cos 0 (0 c 8 s r ) ,  (2.17) 
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the function 4 will depend only on 8 through the combination 

E = (  1 +COS e ) . 
CL I - C O S ~  

(2.18) 

The Euclidean case (SI = 0) is particularly simple since Re 8 will depend on cos 8 
only. In 0 4 we will relate these to the Kinnersley and Kelly (1974) ‘extreme Kerr’ 
solutions. 

The ‘static’ limit (D +CO) is also interesting since (2.14) reduces to the trivial family 
of Weyl (non-flat) solutions 

8 = p p 2 s ’ - l  (2.19) 

which are obtained by combining the flat solutions % = ,U and 8 = p (Kramer et a1 
1980). Note that s1 =$ corresponds to flat space. The one-soliton solution (2.14) can 
thus be seen as the stationary generalisations of the particular static Weyl family (2.19). 

From now on our attention will concentrate on the solution corresponding to the 
Euclidean seed (sl = 0). Using (r, e)  coordinates such a solution can be written as 

2 B(y-tcos8) 1 
(dr2 + r2 de2) + +cos e 

r112 e ds = 

x [-sin 6 dt2 + (1 + 2y cos 8 + cos2 8)r2 sin 6 dqp2 - 2er sin 8 dt dq]  
(2.20) 

where 

y = coth(D/2) & = (+ 1)1/2 B =arbitrary constant. (2.21) 

The static limit of that family of solutions corresponds now to y = 1. Another 
interesting limit, which we will call the ‘magnetic’ limit, is y + XI keeping By = C finite. 
In this magnetic limit the metric adopts the form 

ds2=Cp-1’2(dp2+d~2)-2p dt dqp+2(2 - W)p dqp2 (2.22) 

which corresponds to a member of the van Stockum (1937) class. In fact, the complex 
coordinate change t -* iqp, qp +it puts (2.22) in the usual van Stockum form (Kinnersley 
1975). 

3. Classification of the solutions 

In this section we will classify the one-soliton solutions generated from Euclidean space, 
and some of their intrinsic properties will be analysed. The notation throughout this 
and the next section will be that found in Kramer et a1 (1980). 

First we evaluate the Riemann curvature tensor in a local orthonormal frame. The 
metric is given by 

ds2 = r/,flawb (U ,  b = 0, 1,2,3)  (3.1) 

where q a b  = diag(-1, 1, 1 , l ) .  
The connection 1-forms r a b  are given by 

dw“ = -rab A W b  
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and the curvature 2-forms @ab by 

= drab f Tuc A r c b  = $R O b C d O  h O (3.2) 

whence the components of the Riemann curvature tensor Rnbcd, in the basis (3.1), can 
be read. 

In an orthonormal basis and in vacuum the components &b)(cd) of the Riemann 
tensor, which is identical to the Weyl tensor, can be written in a 6 X 6 symmetric matrix 
R composed of symmetric ‘electric’, E ,  and symmetric ‘magnetic’, B, 3 X 3 matrices as 

R = ( ”  B -E ”) 
with 

Tr(E) = Tr(B) = 0. 

(3.3) 

(3.4) 

For the components of R we will use the convention: (01) = 1, (02) = 2, (03) = 3, 

The orthonormal basis that we take for the metric (2.20) is 
(23) = 4, (31) = 5 and (12) = 6. 

w = sin”’ O(y +cos 0)1/2(1 + 2 7  cos 8 + cos’ e)-’/* dt 

o = sin”’ O(y +cos e)-’/’( 1 + 2y cos 8 + cos’ e)”’r d p  

, ~ = B I / z  r -114 

0 

1 

- E sin”’ e(y +cos @)-”’(l+ 2 7  cos 8 + cos’ O)-”’ dt (3.5) 

w 3  = ~ 1 / 2 ~ 3 / 4  Sin-1/4 e(7 +COS e)’/’ de. 

El2 =E13 =Bl~=B13=0. (3.6) 

8(y+cos 0)”’ dr 

For a metric of type (2.1) the components of the Riemann tensor verify 

The remaining components can be found from (3.2), after a straightforward 
calculation, to be 

Ellla =sin-’e(y+cos e)- ’ (y2-2+3 cosz8+2y cos3 8 )  

E33/a = l-$sin-’e COS’ e-$cos e(y+cos e)-’+(y+cos e) - ’ (y ’ -2+~0~ ’  e) 

&/a = -5 sin-’ e(7 +COS e)-l(y + + cos e)-’{y - E + [ y ( y  + E )  + 11 cos e 
+ (2 + y COS e -COS’ e)(i + 2y COS e +COS’ e)-’ 

+ ( ~ + 2 & )  COS’ e} (3.7) 

= -2 sin e(y+cos e)-’ 
= -$sin-’ e(y+cos e ) - ’ ( 4 + 3 ~  cos e-cos’ e) 

+ 3  sin e(y+cos e ) ( 1 + 2 ~  cos e+cOs’ e)-’ 
B ~ ~ / u ~  = -33 + 4y COS e +COS’ e)(i + 2y COS e +COS’ e)-’ 
where 

a = ( 4 ~ ) ” r - ~ ”  sin-”’ e(? +cos e)-’ b = E ( y + ~ ~ ~  e)-’. 
By projecting the Riemann tensor on a complex null tetrad, easily constructed from 

the orthonormal frame (3.5), and using the d’Inverno and Russell-Clark algorithm as 
given in Kramer et a1 (1980), it is not difficult to see that our metric for a finite y is of 
Petrov type I and therefore admits in general four principal null directions. 
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From the scalar invariants that one can construct with the Riemann tensor it is easy 
to see that the metric has intrinsic singularities at the values of 8 corresponding to the 
zeros of sin 8, y +cos 8 (only for y = 1) and y - E +cos 8. These include the axis of 
symmetry and a 'cone' of angle .n/2 c 8 ss .n which coincides with the axis for the static 
case ( y  = 1) and with the z = W plane for the magnetic limit ( y  -P 00). 

Our field is, therefore, not asymptotically flat. On the non-singular directions of 8 it 
becomes flat at r-*m as r-3/2; this is a milder flattening than, for instance, the 
Schwarzschild solution which goes like r-3, 

The Riemann tensor becomes particularly simple in the static and magnetic limits. 
In both cases it is not difficult to find the normal forms of such a tensor. 

For the static limit ( y  = 1) the magnetic part of the curvature tensor vanishes (B = 0) 
and the remaining electric part is 

E = ( 8 ~ ) - ' r - ~ ' ~  sin-' e(i +cos e)-l (3.8) 
O I  

0 
-2 +cos 8 -3 sin 8 r+H"'" -3 sin 8 4-5 cos 8 

which can be easily diagonalised to give it the normal form. The eigenvalues are 
proportional to -2 + 4 cos 8 , l -  2 cos 8 f 343( 1 -cos and are all different, except 
in two directions of 8, confirming the character of a Petrov type I metric. The intrinsic 
singularity reduces in this case to the axis of symmetry. 

For the magnetic limit ( y  + 00) the metric is of Petrov type I1 as one can expect from 
its relation to the van Stockum metric (Hoffman 1969). After a rotation of axis one can 
write E + iB in the normal form 

Besides the singularity on the axis of symmetry, the plane z = W is also singular. 
Because of their singularities, these metrics cannot represent the external fields of 

bounded objects. But their interpretation as limiting metrics valid in the vicinity of 
some singular surface of an asymptotically flat metric cannot be disregarded, in 
principle, as we will briefly discuss in the next section. 

4. Related asymptotically flat solutions 

The study of stationary axisymmetric fields in terms of the Ernst (1968) formulation has 
been most fruitful in the search for new solutions and for their physical interpretation. 
Here we will consider the Ernst formulation in order to relate the one-soliton solutions 
(2.20) to other known solutions. We will see also that the simplicity of the relevant 
Ernst potentials suggests new related families of asymptotically flat solutions. 

For such a formulation, the metric (2.1) is better written in the form 

ds2 =F-1[e2K(dpZ+dz2)+p2 dq2]-F(dt+A dq)'. (4.1) 

ZS=F+iw (4.2) 

The Ernst potential is a complex function 
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in terms of which the Einstein equations in vacuum become (see Kramer et al 1980) 

(8+8*)V28=2VE4 * V 8  (4.3) 
(8 + yI*)2K,c = JZpEp,& ($+GS*)’A,c=2p(%-GS*),r (4.4) 

where ( )* indicates complex conjugation, V = [a,,, a=), Vz = 8: +p- l  a,, +af  and &a, = 
a,, - ia,. 

Now, comparing (4.1) with (2.20) and using (4.4) to find wy we get the Emst potential 
for the one-soliton solution, which, in terms of 8, is 

(sin 8 +is y- l  cos e). 1 
8 =  

Y+COS e (4.5) 

The fact that this potential depends only on the variable cos 8 can be exploited 
further. But for that, it is better to use another Ernst potential 6 defined from 8 by 

It is worth noting that the real and imaginary parts of this potential have been 
interpreted by Kinnersley and Kelly (1974) as representing the relativistic version of the 
Newtonian and magnetic potentials, respectively. In that sense ey-’ represents a 
‘magnetic charge’: it takes the value E y-’ = 0 in the static limit and its maximum value, 
~ y - ’  = 1, in the magnetic limit. 

One of the most important features of 6 is that, by using prolate spheroidal 
coordinates ( x ,  y), which are related to the Weyl coordinates (p, z) by 

p = u(x2 - 1)’/2( 1 - y y  z = uxy U =constant 

2rx=r++r- 2ry = r+ - r- r i  = pz  + (z *cr)’, (4.7) 

(55*-l){[(x2-l)6,,1,, +[U -Y2)57,1,,}=25*[(X2-1>5,f+(1 -Y2)5,3* (4.8) 

the Ernst equation (4.3) becomes 

The symmetry of this equation in the coordinates x and y has been exploited by 
Tomimatsu and Sato (1972) to find new solutions. 

Now, since the (x ,  y )  coordinates can be written in terms of the Boyer-Lindquist 
coordinates (R, 0)  (which coincide with our coordinates (2.17) (r, 8) when R is large) as 

u x = R - m  y = cos 0, (4.9) 

equation (4.5) suggests the Emst potential in prolate spheroidal coordinates 

(1 -y2)”’+iey-ly 
Y + Y  

8 =  (4.10) 

which provides a solution e ( y )  for (4.8). 

commuting x and y. Therefore, from (4.10) we can construct the new solution 
From any given solution ((x, y)  of (4.8) one can construct a new solution by 

(2 - 1 y 2  + &y% 
8 = i  

Y + X  
(4.11) 
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and also, as it is easy to check, the static solution 

(x2 - 1p2 - 
6 4 =  (4.12) 

Both solutions are asymptotically flat. The last one (4.12) contains the Zipoy- 
Voorhees metric 

(4.13) 

with deformation parameter S = 3 when y = 1, and a physical interpretation for it can be 
given. 

In fact, Voorhees (1970) gave a plausible physical interpretation for the family 
(4.13) by comparing the family with the member S = 1 which is the Schwarzschild 
metric. For the Schwarzschild solution the coordinates (R, 0)  with U = m can be seen as 
spherical coordinates, and (4.13) gives the field of a point particle of mass m. In general 
the coordinates ‘adapted to the source’ have u = m/S, and by expanding 8 in terms of 
(R, 0) for large R, and comparing with the (spherical) Schwarzschild coordinates 
(U = m), the metria (4.13) can be interpreted as the external fields of rods (if S < 1) of 
mass m. For S = d the rod has length 4m. 

For large x and finite y (4.12) can be expanded as 

~ = l - & y - ~ - ( l - & y - l ) y - + [ ( l - & y - l ) y  1 2 -Q+. 1 1  . .. 
X 

This asymptotic form can be reduced to the usual 

2m 1 
r r 

64 = 1 --+ (polynomial in cos e) T+. . . 

by means of an Ehlers transformation (Cosgrove 1980) which will involve the 
parameter y. Therefore, the solution (4.12) can be seen, at least asymptotically, as an 
Ehlers transformation, depending on y, of the Zipoy-Voorhees metric with defor- 
mation parameter S = 2. 

The relation between the asymptotically flat solutions and the non-asymptotically 
flat solution (4.10) is similar to that between the Zipoy-Voorhees metria and the 
Kinnersley and Kelly (1974) ‘extreme Kerr’ solutions representing a region of the 
Tomimatsu and Sat0 (1972) metric near to its ergosphere. This seems to suggest that a 
similar interpretation might be found for the one-soliton solutions as describing some 
limited region of the external field of rods, at least in the y = 1 limit. 
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